Environmental Product Declaration (EPD)

Declaration code: EPD-SWL-GB-75.3.01

Note: This EPD was created on the basis of an LCA tool.

SIEGENIA-AUBI KG

Decentralised ventilation units

Wall ventilator active, 2 fans

Rasis:

DIN EN ISO 14025 EN 15804 + A2 Company EPD Environmental Product Declaration

> Publication date: 30.09.2025 Valid until: 30.09.2030

Environmental Product Declaration (EPD)

Declaration code: EPD-SWL-GB-75.3.01

Programme operator	Theodor-Gi	ift Rosenheim GmbH Theodor-Gietl-Straße 7-9 83026 Rosenheim, Germany							
Tool creator / Practitioner of LCA	Hauptstraße	Sphera Solutions GmbH Hauptstraße 111-113 70771 Leinfelden-Echterdingen, Germany							
Tool holder / Declaration holder	Industriestra 57234 Wilns	SIEGENIA-AUBI KG Industriestraße 1-3 57234 Wilnsdorf, Germany www.siegenia.com							
Declaration code	EPD-SWL-0	GB-75.3.01							
Designation of declared product	Wall ventila	Wall ventilator active, 2 fans							
Scope	Ventilation (Ventilation of residential buildings							
Basis	This EPD was prepared on the basis of EN ISO 14025:2011 and DIN EN 15804:2012+A2:2019. In addition, the "Allgemeiner Leitfaden zur Erstellung von Typ III Umweltproduktdeklarationen" (General guideline for preparation of Type III Environmental Product Declarations) applies. The declaration is based on the PCR documents "PCR Part A" PCR-A-1.0:2023 and "Fans and ventilation systems" PCR-LS-1.0:2022.								
	Publication 30.09.2025		Last revision: 30.09.2025		Valid until: 30.09.2030				
Validity	This verified Company Environmental Product Declaration (company EPD) applies solely to the specified products and is valid for a period of five years from the date of publication in accordance with DIN EN 15804.								
LCA basis	The LCA was prepared in accordance with DIN EN ISO 14040 and DIN EN ISO 14044. The data collected from the production plants of the company SIEGENIA-AUBI KG were used as a data basis, as well as generic data from the database "Sphera - LCA for Expert Content version 2023.1". The calculation was carried out using the Siegenia LCA tool Sphera - LCA for Expert Content version 2023.1. LCA calculations were carried out for the "cradle to gate" life cycle with options (cradle to gate with options) including all upstream chains (e.g. raw material extraction, etc.).								
Notes	The ift-Guidance Sheet "Conditions and Guidance for the Use of ift-Test Documents" applies. The declaration holder assumes full liability for the underlying data, certificates and verifications.								
Allfal	T. Millake Same Voz								

Christoph Seehauser Deputy Head for Sustainability Dr. Torsten Mielecke Chairman of Expert Committee ift-EPD and PCR Susanne Volz External Verifier

Publication date: 30.09.2025

Page 3

Product group Decentralised ventilation units

1 General Product Information

Product definition

The EPD relates to the product group Decentralised ventilation units and applies to:

1 pc Decentralised ventilation unit of company SIEGENIA-AUBI KG

The functional unit is obtained by summing up:

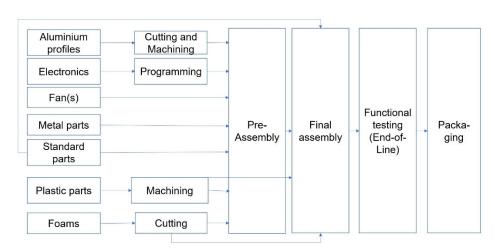
Assessed product	Declared unit	Unit weight
AEROPLUS WRG	1 pc	5.93 kg/pc

Table 1 Product groups

The average unit is declared as follows:

Directly used material flows are determined by means of manufactured masses (kg) and allocated to the declared unit. All other inputs and outputs in the manufacture were scaled to the declared unit as a whole, since no direct assignment to the average size is possible. The reference period is the year 2024.

The validity of the EPD is restricted to the following series:


- AEROPLUS WRG
- AEROPLUS WRG smart
- AEROVITAL ambience
- AEROVITAL ambience smart
- AEROVITAL
- AEROLIFE

Product description

Active wall ventilators with two fans enable supply and exhaust air with heat recovery.

For a detailed product description refer to the manufacturer specifications or the product specifications of the respective offer/quotation.

Product manufacture

Scope

Ventilation of residential buildings

Publication date: 30.09.2025

Page 4

Product group Decentralised ventilation units

Management systems The following management systems are held:

- Quality management system as per DIN EN ISO 9001:2015
- Environmental management system as per DIN EN ISO 14001:2015
- Occupational health and safety management system as per DIN EN ISO 45001:2018
- Energy management as per DIN EN ISO 50001:2018

Additional information

For additional verifications of applicability or conformity refer to the CE marking and the documents accompanying the product, if applicable.

2 Materials used

Primary materials

The raw materials used can be found in Section 6.2 Life cycle inventory

The raw materials used can be found in the life cycle assessment.

Declarable substances

Substances according to REACH candidate list are included (declaration of 31.01.2023).

All relevant safety data sheets and in particular the RoHS-REACH declaration of conformity can be obtained from SIEGENIA-AUBI KG. For this, see https://www.siegenia.com.

3 Construction process stage

Processing recommendations, installation

Observe the instructions for assembly/installation, operation, maintenance and disassembly, provided by the manufacturer. For this, see https://www.siegenia.com

4 Use stage

Emissions to the environment

No emissions to indoor air, water and soil are known. There may be VOC emissions.

Reference service life (RSL)

The RSL information was provided by the manufacturer. The RSL must be established under specified reference conditions of use and relate to the declared technical and functional performance of the product within the building. It must be determined according to all specific rules given in European product standards or, if none are available, according to a c-PCR. It must also take into account ISO 15686-1, -2, -7 and -8. If there is guidance on deriving RSLs from European Product Standards or a c-PCR, then such guidance must take precedence.

If it is not possible to determine the service life as the RSL in accordance with ISO 15686, the BBSR table "Nutzungsdauer von Bauteilen zur Lebenszyklusanalyse nach BNB" (service life of building components for life cycle assessment in accordance with the sustainable construction evaluation system) can be used. For further information and explanations refer to www.nachhaltigesbauen.de.

Declaration code: EPD-SWL-GB-75.3.01

Publication date: 30.09.2025

Page 5

Product group Decentralised ventilation units

For this EPD the following applies:

For an EPD "cradle to factory gate with options", with modules C1-C4 and module D (A1-A3 + C + D and one or more additional modules from A4 to B7), the specification of a reference service life (RSL) is only possible if the reference service life conditions are specified.

The service life of the Wall ventilator active, 2 fans from SIEGENIA-AUBI KG is optionally specified as 10 years in accordance with product standards.

The service life depends on the characteristics of the product and the terms of use. The conditions and characteristics described in the EPD are applicable, in particular the characteristics listed below:

- Outdoor environment: Weather conditions can have a negative effect on the service life.
- Indoor environment: No impacts (e.g. humidity, temperature) known that have a negative effect on the service life.

The service life solely applies to the characteristics specified in this EPD or the corresponding references.

The RSL does not reflect the actual life time, which is usually determined by the service life and the redevelopment of a building. It does not give any information on the useful life, warranty referring to performance characteristics or guarantees.

5 End-of-life stage

Possible end-of-life stages

The Wall ventilator active, 2 fans are fed to central collection points. There the products are usually shredded and sorted into their constituents. The end-of-life stage depends on the site where the products are used and is therefore subject to the local regulations. Observe the locally applicable regulatory requirements.

In this EPD, the modules of after-use are presented as follows: Steel is recycled, plastics are thermally recycled. Inert residual fractions are sent to landfill.

Disposal routes

The average disposal routes were taken into account in the LCA.

All life cycle scenarios are detailed in the Annex.

Publication date: 30.09.2025

Page 6

Product group Decentralised ventilation units

6 Life Cycle Assessment (LCA)

Environmental product declarations are based on life cycle analyses (LCAs) which use material and energy flows for the calculation and subsequent representation of environmental impacts.

As a basis for this, life cycle assessments were prepared for Wall ventilator active, 2 fans using an LCA tool. These LCAs are in conformity with the requirements set out in DIN EN 15804 and the international standards DIN EN ISO 14040, DIN EN ISO 14044, ISO 21930 and EN ISO 14025.

The LCA is representative of the products presented in the Declaration and the specified reference period.

6.1 Definition of goal and scope

Goal

The goal of the LCA is to demonstrate the environmental impacts of the products. In accordance with DIN EN 15804, the environmental impacts covered by this Environmental Product Declaration are presented for the entire product life cycle in the form of basic information. Apart from these, no other environmental impacts have been specified.

Data quality, data availability and geographical and timerelated system boundaries The specific data originate exclusively from the fiscal year 2024. They were collected on-site at the plants located in DE-57234 Wilnsdorf and in PL-46-203 Kluczbork and originate in parts from company records and partly from values directly obtained by measurement. The data was checked for validity by the tool creator / practitioner of LCA.

The generic data originate from the "Sphera - LCA for Experts Content version 2023.1" professional and building materials databases. The last update of both databases was in 2023. Data from before this date originate also from these databases and are not more than five years old. No other generic data were used for the calculation.

Generic data are selected as accurately as possible in terms of geographic reference. If no country-specific data sets are available or if the regional reference cannot be determined, European or globally valid data sets are used.

Data gaps were either filled with comparable data or conservative assumptions, or the data were cut off in compliance with the 1% rule.

The life cycle was modelled using the sustainability software tool "Sphera - LCA for Experts Content version 2023.1" for the development of life cycle assessments. The LCA was calculated using the Siegenia LCA tool version Sphera - LCA for Expert Content version 2023.1.

Publication date: 30.09.2025

Page 7

Product group Decentralised ventilation units

Scope / System boundaries

The system boundaries refer to the supply of raw materials and purchased parts, manufacture/production, use and end-of-life stage of the Wall ventilator active, 2 fans.

No additional data from pre-suppliers/subcontractors or other sites were taken into consideration.

Cut-off criteria

All company data collected, i.e. all commodities/input and raw materials used, the thermal energy and electricity consumption, were taken into consideration.

The following data was truncated:

- Packaging of primary materials
- Packaging transport for end product
- Ancillary materials and consumables

The boundaries cover only the product-relevant data. Building sections/parts of facilities that are not relevant to the manufacture of the products, were excluded.

The transport distances of the pre-products used were taken into consideration as a function of 100% of the mass of the products.

The criteria for the exclusion of inputs and outputs as set out in DIN EN 15804 are fulfilled. From the data analysis it can be assumed that the total of negligible processes per life cycle stage does not exceed 1% of the mass/primary energy. This way the total of negligible processes does not exceed 5% of the energy and mass input. The life cycle calculation also includes material and energy flows that account for less than 1%.

6.2 Life cycle inventory

Aim

All material and energy flows are described below. The processes covered are presented as input and output parameters and refer to the declared/functional units.

Life cycle stages

The complete life cycle of Wall ventilator active, 2 fans is shown in the annex. The product stage "A1 – A3", construction process stage "A4 – A5", use stage "B2 and B6", end-of-life stage "C1 – C4" and the benefits and loads beyond the system boundaries "D" are considered.

Benefits

The below benefits have been defined as per DIN EN 15804:

- Benefits from packaging materials (A5)
- Benefits from energy and materials (C3)

Allocation of co-products

No allocations occur during production.

Declaration code: EPD-SWL-GB-75.3.01

Publication date: 30.09.2025

Page 8

Product group Decentralised ventilation units

Allocations for re-use, recycling and recovery

If the products are reused/recycled and recovered during the product stage (rejects), the elements are shredded, if necessary and then sorted into their constituents. This is done by various process plants, e.g. magnetic separators.

The system boundaries were set following their disposal, reaching the end-of-waste status.

Allocations beyond life cycle boundaries

The use of recycled materials in the manufacturing process was based on the current market-specific situation. In parallel to this, a recycling potential was taken into consideration that reflects the economic value of the product after recycling (recyclate).

Secondary material designated as inputs to Wall ventilator active, 2 fans is calculated as input without loads. No benefits are assigned to module D, but consumption to modules C3 and C4 (worst case consideration). The system boundary set for the recycled material refers to collection.

Secondary material

The use of secondary materials was considered. No secondary materials are used.

Inputs

The following manufacturing-related inputs were included in the LCA per 1 pc Decentralised ventilation unit:

Energy

For the input material gas, "from natural gaws (DE)" and "from natural gaws (PL)" were assumed.

For the input material "light fuel oil", "from light fuel oil (DE)" was assumed. For the input material "biogas", "from biogas (DE)" was assumed.

A mix of "Electricity from hydropower (DE)" (96.18%) and "Electricity from photovoltaic (DE)" (3.82%) was used for the electricity input at the German plant.

For the electricity input at the Polish plant, a mix of the "Electricity residual mix (PL)" (96.79%) and "Electricity from photovoltaic (PL)" (3.21%) was used.

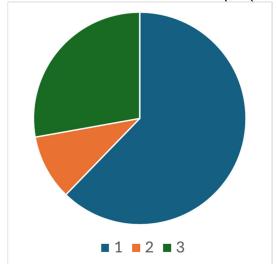
A portion of the process heat is used for space heating. This can, however, not be quantified and a "worst case" figure was taken into account for the product.

Water

There is no water consumption in the individual process steps for production.

The consumption of fresh water specified in Section 6.3 originates (among others) from the process chain of the pre-products.

Page 9



Product group Decentralised ventilation units

Inputs

Raw material / pre-products

The charts below show the share of raw materials/pre-products in percent.

Illustration 1 Percentage of individual materials per declared unit

No.	Material	Mass in %					
1	Plastics	62%					
2	Metals	10%					
3	Electrical components	28%					

Table 2 Percentage of individual materials per declared unit

Ancillary materials and consumables

Ancillary materials and consumables are cut off.

Product packaging

The amounts used for product packaging are as follows:

		3				
No.	Material	Mass in g				
1	Wood	4.92				
2	Cardboard	534.69				
3	PE film	63.60				

Table 3 Weight in g of packaging per declared unit

Biogenic carbon content

Only the biogenic carbon content of the associated packaging is reported, as the total mass of biogenic carbon-containing materials is less than 5% of the total mass of the product and associated packaging. According to EN 16449, the following amounts of biogenic carbon are generated for packaging:

No. Part Content in kg C per pc

1 In the associated packaging 0.232n

Table 4 Biogenic carbon content of the packaging at the factory gate

Declaration code: EPD-SWL-GB-75.3.01

Publication date: 30.09.2025

Page 10

Product group Decentralised ventilation units

Outputs

The LCA includes the following production-relevant outputs per of 1 pc blower:

Waste

Secondary raw materials were included in the benefits. See Section 6.3 - Impact assessment.

Waste water

The manufacture does not produce any waste water.

6.3 Impact assessment

Aim

The impact assessment covers inputs and outputs. The impact categories applied are named below:

Core indicators

The models for impact assessment were applied as described in DIN EN 15804-A2.

The core indicators presented in the EPD are as follows:

- Depletion of abiotic resources minerals and metals (ADPE)
- Depletion of abiotic resources fossil fuels (ADPF)
- Acidification (AP)
- Ozone depletion (ODP)
- Climate change total (GWP-t)
- Climate change fossil (GWP-f)
- Climate change biogenic (GWP-b)
- Climate change land use & land use change (GWP-I)
- Eutrophication freshwater (EP-fw)
- Eutrophication salt water (EP-m)
- Eutrophication land (EP-t)
- Photochemical ozone creation (POCP)
- Water use (WDP)

Declaration code: EPD-SWL-GB-75.3.01

Publication date: 30.09.2025

Page 11

Product group Decentralised ventilation units

Use of resources

The models for impact assessment were applied as described in DIN EN 15804-A2.

The following resource use indicators are presented in the EPD:

- Renewable primary energy as energy source (PERE)
- Renewable primary energy for material use (PERM)
- Total use of renewable primary energy (PERT)
- Non-renewable primary energy as energy source (PENRE)
- Renewable primary energy for material use (PENRM)
- Total use of non-renewable primary energy (PENRT)
- Use of secondary materials (SM)
- Use of renewable secondary fuels (RSF)
- Use of non-renewable secondary fuels (NRSF)
- Net use of freshwater resources (FW)

Waste

The waste generated during the production of 1 pc Decentralised ventilation unit is evaluated and shown separately for the fractions trade wastes, special wastes and radioactive wastes. Since waste handling is modelled within the system boundaries, the amounts shown refer to the deposited wastes. A portion of the waste indicated is generated during the manufacture of the pre-products.

The models for impact assessment were applied as described in DIN EN 15804-A2.

The following waste categories and indicators for output closures are presented in the EPD:

- Disposed hazardous waste (HWD)
- Non-hazardous waste disposed (NHWD)
- Radioactive waste disposed (RWD)
- Components for re-use (CRU)
- Materials for recycling (MFR)
- Materials for energy recovery (MER)
- Exported electrical energy (EEE)
- Exported thermal energy (EET)

Declaration code: EPD-SWL-GB-75.3.01

Publication date: 30.09.2025

Page 12

Product group Decentralised ventilation units

Additional environmental impact indicators

The models for impact assessment were applied as described in DIN EN 15804-A2.

The additional impact categories presented in the EPD are as follows:

- Particulate matter emissions (PM)
- Ionizing radiation, human health (IRP)
- Ecotoxicity freshwater (ETP-fw)
- Human toxicity, carcinogenic effects (HTP-c)
- Human toxicity, non-carcinogenic effects (HTP-nc)
- Impacts associated with land use/soil quality (SQP)

Declaration code: EPD-SWL-GB-75.3.01 Publication date: 30.09.2025 Page 13

ift					Resu	lts per 1 p	c Wall ver	ntilator act	ive, 2 fans	6						
ROSENHEIM	Unit	A1-A3	A4	A5	B1	B2	В3	B4	B5	B6	B7	C1	C2	C3	C4	D
	Core indicators															
GWP-t	kg CO₂ eq.	29.94	5.26E-02	1.05	ND	0.19	ND	ND	ND	7.62	ND	1.29E-03	2.39E-02	8.15	1.51E-04	-7.66
GWP-f	kg CO ₂ eq.	30.64	5.21E-02	0.20	ND	0.19	ND	ND	ND	7.62	ND	1.29E-03	2.36E-02	8.15	1.50E-04	-7.64
GWP-b	kg CO₂ eq.	-0.76	5.43E-06	0.85	ND	3.09E-04	ND	ND	ND	3.79E-03	ND	6.42E-07	2.47E-06	6.99E-04	1.96E-12	-2.38E-02
GWP-I	kg CO ₂ eq.	6.42E-02	4.82E-04	2.26E-05	ND	6.19E-06	ND	ND	ND	6.97E-04	ND	1.18E-07	2.19E-04	6.21E-05	4.67E-07	-2.32E-03
ODP	kg CFC-11 eq.	3.07E-10	6.77E-15	2.31E-14	ND	2.73E-13	ND	ND	ND	7.49E-11	ND	1.27E-14	3.07E-15	1.06E-12	3.82E-16	-3.45E-11
AP	mol H⁺-eq.	0.11	7.61E-05	2.62E-05	ND	1.58E-04	ND	ND	ND	1.16E-02	ND	1.96E-06	3.45E-05	6.19E-03	1.07E-06	-1.85E-02
EP-fw	kg P eq.	8.42E-05	1.90E-07	1.25E-08	ND	8.73E-08	ND	ND	ND	7.53E-06	ND	1.27E-09	8.63E-08	3.31E-07	3.03E-10	-8.83E-06
EP-m	kg N-eq.	2.19E-02	2.75E-05	6.25E-06	ND	4.33E-05	ND	ND	ND	3.27E-03	ND	5.54E-07	1.25E-05	3.05E-03	2.75E-07	-3.43E-03
EP-t	mol N eq.	0.23	3.26E-04	1.18E-04	ND	4.89E-04	ND	ND	ND	3.46E-02	ND	5.85E-06	1.48E-04	3.46E-02	3.03E-06	-3.68E-02
POCP	kg NMVOC-eq.	7.01E-02	6.66E-05	1.77E-05	ND	1.88E-04	ND	ND	ND	9.04E-03	ND	1.53E-06	3.02E-05	7.82E-03	8.31E-07	-1.04E-02
ADPF*2	MJ	2.03E-03	3.43E-09	3.15E-10	ND	3.31E-09	ND	ND	ND	3.69E-07	ND	6.24E-11	1.55E-09	9.76E-09	6.93E-12	-2.54E-04
ADPE*2	kg Sb eq.	576.90	0.71	8.64E-02	ND	2.89	ND	ND	ND	167.32	ND	2.83E-02	0.32	3.05	2.00E-03	-113.67
WDP*2	m³ world eq. deprived	6.50	6.29E-04	1.92E-02	ND	2.34E-02	ND	ND	ND	0.64	ND	1.08E-04	2.85E-04	1.02	1.65E-05	-0.78
	Resource management															
PERE	MJ	102.18	5.16E-02	9.71	ND	0.12	ND	ND	ND	22.92	ND	3.88E-03	2.34E-02	0.62	3.26E-04	-28.03
PERM	MJ	9.70	0.00	-9.70	ND	0.00	ND	ND	ND	0.00	ND	0.00	0.00	0.00	0.00	0.00
PERT	MJ	111.88	5.16E-02	1.27E-02	ND	0.12	ND	ND	ND	22.92	ND	3.88E-03	2.34E-02	0.62	3.26E-04	-28.03
PENRE	MJ	464.95	0.71	3.01	ND	2.89	ND	ND	ND	167.35	ND	2.83E-02	0.32	114.11	2.00E-03	-113.86
PENRM	MJ	113.99	0.00	-2.93	ND	0.00	ND	ND	ND	0.00	ND	0.00	0.00	-111.06	0.00	0.00
PENRT	MJ	578.93	0.71	8.65E-02	ND	2.89	ND	ND	ND	167.35	ND	2.83E-02	0.32	3.05	2.00E-03	-113.86
SM	kg	0.42	0.00	0.00	ND	0.00	ND	ND	ND	0.00	ND	0.00	0.00	0.00	0.00	1.08
RSF	MJ	0.00	0.00	0.00	ND	0.00	ND	ND	ND	0.00	ND	0.00	0.00	0.00	0.00	0.00
NRSF	MJ	0.00	0.00	0.00	ND	0.00	ND	ND	ND	0.00	ND	0.00	0.00	0.00	0.00	0.00
FW	m³	0.22	5.65E-05	4.57E-04	ND	6.28E-04	ND	ND	ND	3.84E-02	ND	6.49E-06	2.56E-05	2.40E-02	5.05E-07	-3.41E-02
						W	laste cate	gories								
HWD	kg	7.71E-05	2.20E-12	2.31E-12	ND	1.29E-10	ND	ND	ND	9.70E-09	ND	1.64E-12	1.00E-12	2.32E-10	4.36E-14	-4.07E-09
NHWD	kg	0.99	1.08E-04	9.33E-04	ND	1,40E-03	ND	ND	ND	3.69E-02	ND	6.24E-06	4.92E-05	0.36	1.00E-02	-0.35
RWD	kg	1.58E-02	1.33E-06	5.99E-06	ND	7.85E-05	ND	ND	ND	2.61E-02	ND	4.41E-06	6.04E-07	1.11E-04	2.28E-08	-7,10E-03
						Out	put mater	ial flows								
CRU	kg	0.00	0.00	0.00	ND	0.00	ND	ND	ND	0.00	ND	0.00	0.00	0.00	0.00	0.00
MFR	kg	0.00	0.00	0.00	ND	0.00	ND	ND	ND	0.00	ND	0.00	0.00	1.08	0.00	0.00
MER	kg	0.00	0.00	0.00	ND	0.00	ND	ND	ND	0.00	ND	0.00	0.00	0.00	0.00	0.00
EEE	MJ	0.00	0.00	0.43	ND	0.23	ND	ND	ND	0.00	ND	0.00	0.00	22.41	0.00	0.00
EET	MJ	0.00	0.00	0.77	ND	0.40	ND	ND	ND	0.00	ND	0.00	0.00	40.77	0.00	0.00
Kev.	•															

Key:

GWP-t – global warming potential - total GWP-f – global warming potential fossil fuels use change ODP – ozone depletion potential AP - acidification potential EP-fw - eutrophication potential - aquatic freshwater EP-m - eutrophication potential - aquatic marine EP-t - feutrophication potential - terrestrial POCP - photochemical ozone formation potential AP - acidification potential - potential - aquatic freshwater EP-m - eutrophication potential - aquatic marine EP-t - minerals&metals WDP*2 – Water (user) deprivation potential PERE - Use of renewable primary energy PERM - use of renewable primary energy resources PERT - total use of renewable primary energy resources PENRE - use of non-renewable primary energy resources SM - use of secondary material RSF - use of renewable secondary fuels NRSF - use of non-renewable secondary fuels FW - net use of fresh water HWD - hazardous waste disposed NHWD - non-hazardous waste disposed RWD - radioactive waste disposed CRU - components for re-use MFR - materials for recycling MER - materials for recycling MER - materials

													1 9 - 1 -			
ift					Resu	lts per 1 p	c Wall vei	ntilator act	ive, 2 fans	S						
ROSENHEIM	Unit	A1-A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4	D
Additional environmental impact indicators																
PM	Disease incidence	1.09E-06	6.55E-10	1.70E-10	ND	1.45E-09	ND	ND	ND	1.05E-07	ND	1.77E-11	2.97E-10	2.35E-08	1.31E-11	-1.88E-07
IRP*1	kBq U235-eq.	2.11	1.99E-04	9.17E-04	ND	1.20E-02	ND	ND	ND	3.91	ND	6.62E-04	9.01E-05	1.66E-02	2.64E-06	-1.21
ETP-fw*2	CTUe	272.79	0.50	4.30E-02	ND	1.42	ND	ND	ND	47.92	ND	8.11E-03	0.23	1.41	1.09E-03	-27.78
HTP-c*2	CTUh	1.98E-08	1.03E-11	1.99E-12	ND	3.15E-11	ND	ND	ND	8.65E-10	ND	1.46E-13	4.67E-12	7.53E-11	1.68E-13	-4.40E-09
HTP-nc*2	CTUh	4.64E-07	5.49E-10	7.61E-11	ND	1.30E-09	ND	ND	ND	4.43E-08	ND	7.49E-12	2.49E-10	7.28E-09	1.85E-11	-6.97E-08
SQP*2	dimensionless	121.08	0.30	2.55E-02	ND	0.10	ND	ND	ND	22.64	ND	3.83E-03	0.13	0.66	4.86E-04	-19.92

Key:

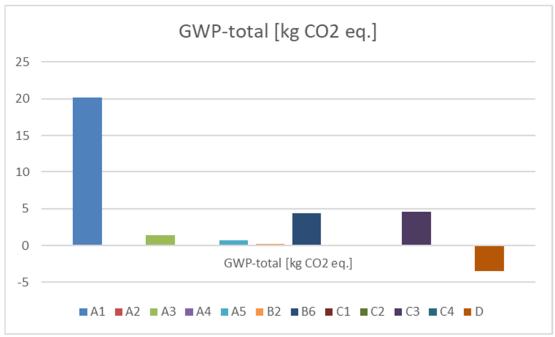
PM – particulate matter emissions potential IRP*1 – ionizing radiation potential – human health effects HTP-nc*2 - Human toxicity potential – non-cancer effects SQP*2 – soil quality potential

Disclaimers

^{*1} This impact category deals mainly with the eventual impact of low-dose ionising radiation on human health of the nuclear fuel cycle. It does not consider effects due to possible nuclear accidents, occupational exposure nor due to radioactive waste disposal in underground facilities. Potential ionising radiation from the soil, from radon and from some building materials is also not measured by this indicator

^{*2} The results of this environmental impact indicator shall be used with care as the uncertainties on these results are high or as there is limited experience with the indicator.

Product group Decentralised ventilation units


6.4 Interpretation, LCA presentation and critical review

Evaluation

It can be seen that the manufacturing phase dominates the product system (modules A1-A3). The end-of-life phase (module C3) is the second largest contributor to the GWP impact due to the combustion emissions of plastics. The recycling of metal parts and the avoided pollution contribute to the considerable credits in Module D.

The results for modules B2 and B6 are given for the RSL of 10 years; module B2 has a minor impact on the life cycle, while module B6 has a significant impact in the use phase. Modules A4, A5, C1, C2 and C4 have a negligible impact overall.

The following figure shows the results of the individual modules as an example of the global warming potential.

Illustration 2 Absolute values of the modules of the GWP total

The values obtained from the LCA calculation are suitable for the certification of buildings.

Report

The LCA report underlying this EPD was developed according to the requirements of DIN EN ISO 14040 and DIN EN ISO 14044 as well as DIN EN 15804 and DIN EN ISO 14025. It is deposited with the tool owner and tool creator. The results of the study are not designed to be used for comparative statements intended for publication.

Critical review

The critical review of the LCA and the report took place in the course of verification of the EPD and was carried out by the external verifier Susanne Volz, M Sc. Environmental Sciences (Graduate Business Lawyer).

Publication date: 30.09.2025

Page 16

Product group Decentralised ventilation units

7 General information regarding the EPD

Comparability

This EPD was prepared in accordance with DIN EN 15804 and is therefore only comparable to those EPDs that also comply with the requirements set out in DIN EN 15804.

Any comparison must refer to the building context and the same boundary conditions of the various life cycle stages.

For comparing EPDs of construction products, the rules set out in DIN EN 15804, Clause 5.3, apply.

Communication

The communications format of this EPD meets the requirements of EN 15942:2012 and is therefore the basis for B2B communication. Only the nomenclature has been changed according to DIN EN 15804.

Verification

Verification of the Environmental Product Declaration is documented in accordance with the ift "Richtlinie zur Erstellung von Typ III Umweltproduktdeklarationen" (Guidance on preparing Type III Environmental Product Declarations) in accordance with the requirements set out in DIN EN ISO 14025.

This declaration is based on the PCR documents "PCR Part A" PCR-A-1.0:2023 and "Fans and ventilation systems" PCR-LS-1.0:2022.

The European standard EN 15804 serves as the core PCR a)
Independent verification of the declaration and statement according
to EN ISO 14025:2010
Independent third party verifier: b)
Susanne Volz
^{a)} Product category rules
b) Optional for business-to-business communication
Mandatory for business-to-consumer communication
(see EN ISO 14025:2010, 9.4)

Revisions of this document

No.	Date	Note	Practitioner of LCA	Verifier/s
1	26.09.2025	External Verification	Ludwig	Volz

Publication date: 30.09.2025

Page 17

Product group Decentralised ventilation units

8 Bibliography

- 1. **ift-Guideline NA-01/3.** General guideline for preparation of Type III Environmental Product Declarations Rosenheim: ift Rosenheim GmbH, 2015.
- 2. **DIN EN ISO 14040:2018-05.** *Environmental management Life cycle assessment Principles and framework.* Berlin: Beuth Verlag GmbH, 2018.
- 3. **DIN EN ISO 14044:2006-10.** *Environmental management Life cycle assessment Requirements and guidelines.* Berlin: Beuth Verlag GmbH, 2006.
- 4. EN ISO 14025:2011-10. Environmental labels and declarations Type III environmental declarations Principles and procedures. Berlin: Beuth Verlag GmbH, 2011.
- 5. **Research project.** "EPDs für transparente Bauelemente" (EPDs for transparent building components) Final report. Rosenheim: ift Rosenheim GmbH, 2011. SF-10.08.18.7-09.21/II 3-F20-09-1-067.
- 6. **ift Rosenheim GmbH.** Conditions and Guidance for the Use of ift-Test Documents. Rosenheim: s.n., 2016.
- 7. **Sphera Solutions GmbH.** GaBi life cycle inventory data documentation. [Online] 2023. https://www.gabi-software.com/support/gabi/gabi-database-2019-lci-documentation/.
- 8. **PCR Part A.** Product category rules for environmental product declarations as per EN ISO 14025 and EN 15804. Rosenheim: ift Rosenheim, 2023.
- 9. **Klöpffer, W und Grahl, B.** Ökobilanzen (LCA). Weinheim: Wiley-VCH-Verlag, 2009.
- 10. Eyerer, P. und Reinhardt, H.-W. Ökologische Bilanzierung von Baustoffen und Gebäuden Wege zu einer ganzheitlichen Bilanzierung. Basel: Birkhäuser Verlag, 2000.
- 11. Gefahrstoffverordnung GefStoffV (Hazardous substances regulation). Verordnung zum Schutz vor Gefahrstoffen (Regulation on protection against hazardous substances). Berlin: BGBI. (Federal Gazette) I S. 3758, 2017.
- 12. Chemikalien-Verbotsverordnung ChemVerbotsV. (Chemicals Prohibition Regulation). Verordnung über Verbote und Beschränkungen des Inverkehrbringens gefährlicher Stoffe, Zubereitungen und Erzeugnisse Chemikaliengesetz (Regulation on bans and restrictions of the placing on the market of hazardous substances, formulations and products covered by the Chemicals Law). Berlin: BGBI. (Federal Gazette) I S. 1328, 2017.
- 13. **OENORM S 5200:2009-04-01.** Radioactivity in construction materials. Berlin: Beuth Verlag GmbH, 2009.
- 14. **EN 15942:2012-01.** Sustainability of construction works Environmental product declarations Communication format business-to-business. Berlin: Beuth Verlag GmbH, 2012.
- 15. Bundesministerium für Umwelt, Naturschutz, Bau und Reaktorsicherheit (Federal Ministry for the Environment, Nature Conservation and Nuclear Safety). Leitfaden Nachhaltiges Bauen (Guidance on Sustainable Building). Berlin: s.n., 2016.
- 16. **DIN EN 13501-1:2010-01.** Fire classification of construction products and building elements Part 1: Classification using data from reaction to fire tests. Berlin: Beuth Verlag GmbH, 2010.
- 17. **DIN ISO 16000-6:2012-11.** Indoor air Part 6: Determination of volatile organic compounds in indoor and test chamber air by active sampling on Tenax TA® sorbent, thermal desorption and gas chromatography using MS/FID. Berlin: Beuth Verlag GmbH, 2012.
- 18 **ISO 21930:2017-07.** Sustainability in building construction Environmental declaration of building products. Berlin: Beuth Verlag. 2017.
- 19. Bundesimmissionsschutzgesetz BlmSchG. (Federal Immission Law). Gesetz zum Schutz vor schädlichen

Umwelteinwirkungen durch Luftverunreinigungen, Geräusche, Erschütterungen und ähnlichen Vorgängen (Law on harmful environmental impacts by air contamination, noise, vibrations and similar processes). Berlin: BGBI. (Federal Gazette) | S. 3830, 2017.

- 20. Chemikaliengesetz ChemG (Chemicals Act). Gesetz zum Schutz vor gefährlichen Stoffen Unterteilt sich in Chemikaliengesetz und eine Reihe von Verordnungen; hier relevant (Law on protection against hazardous substances Subdivided into Chemicals Law and a series of regulations; of relevance here): Gesetz zum Schutz vor gefährlichen Stoffen (Law on protection against hazardous substances). Berlin: BGBI. (Federal Gazette) I S. 1146, 2017.
- 21. **IKP Universität Stuttgart and PE Europe GmbH.** *GaBi 8: Software and database for LCA.* Leinfelden-Echterdingen: s.n., 2017.
- 22. **DIN EN ISO 12457- Parts 1-4 :2003-01.** Characterization of waste Leaching; Compliance test for leaching of granular waste materials and sludges Part 1-4: Berlin: Beuth Verlag GmbH, 2003.
- 23. **DIN EN ISO 16000-9:2008-04.** Indoor air Part 9: Determination of the emission of volatile organic compounds from building products and furnishing Emission test chamber method. Berlin: Beuth Verlag GmbH, 2008.
- 24. **DIN EN ISO 16000-11:2006-06.** Indoor air Part 11: Determination of the emission of volatile organic compounds from building products and furnishing Sampling, storage of samples and preparation of test specimens. Berlin: Beuth Verlag GmbH, 2006.
- 25. **DIN EN 12457 Parts 1-4:2003-01.** Characterization of waste Leaching; Compliance test for leaching of granular waste materials and sludges Part 1-4: Berlin: Beuth Verlag GmbH, 2003.
- 26. EN ISO 16000-11:2006-06. Indoor air Part 11: Determination of the emission of volatile organic compounds from building products and furnishing Sampling, storage of samples and preparation of test specimens. Berlin: Beuth Verlag GmbH, 2006. 27. EN ISO 16000-9:2006-08. Indoor air Part 9: Determination of the emission of volatile organic compounds from building products and furnishing Emission test chamber method. Berlin: Beuth Verlag GmbH, 2006.
- 28. Federal Environmental Agency. TEXTS 151/2021 Promoting high-quality recycling of plastic waste from demolition waste and strengthening the use of recycled materials in construction products in line with the European Plastics Strategy. Dessau-Roßlau: Federal Environmental Agency, 2021. Vol. ISSN 1862-4804.
- 29. **SIEGENIA-AUBI KG.** Product information, RoHS, REACH Declaration of Conformity. [Online] https://www.siegenia.com.
- 30. **DIN EN 15804:2012+A2:2019+AC:2021.** Sustainability of construction works Environmental product declarations Core rules for the product category of construction products. Berlin: Beuth Verlag GmbH, 2022.
- 31. PCR Part B Fans and ventilation systems. Product category rules for environmental product declarations as per EN ISO 14025 and EN 15804. Rosenheim: ift Rosenheim, 2022.

Publication date: 30.09.2025

Page 18

Product group Decentralised ventilation units

9 Annex

Description of life cycle scenarios for Wall ventilator active, 2 fans

Prod	duct st	tage	Co struc proc sta	ction cess			Us	se stag	Je*			E	ind-of-l	ife stag	e	Benefits and loads beyond the system boundaries
A1	A2	А3	A4	A5	B1	B2	В3	В4	В5	В6	В7	C1	C2	C3	C4	D
Raw material supply	Transport	Manufacture	Transport	Construction/installation process	Use	Maintenance	Repair	Replacement	Modification/refurbishment	Operational energy use	Operational water use	Deconstruction/demolition	Transport	Waste processing	Disposal	Re-use Recovery Recycling potential
✓	✓	✓	✓	✓		✓	_		_	✓	_	✓	✓	✓	✓	✓

Table 5 Overview of applied life cycle stages

The scenarios were calculated taking into account the defined RSL (see 4 Use stage).

The scenarios were based on information provided by the manufacturer.

<u>Note:</u> The standard scenarios selected are presented in bold type. They were also used for calculating the indicators in the summary table.

- ✓ Included in the LCA
- Not included in the LCA

Publication date: 30.09.2025

Page 19

Product group Decentralised ventilation units

A4 Trans	A4 Transport to construction site								
No.	Scenario	Description							
A4	Small series - direct marketing	•	40 t truck (Euro 6), diesel, 24.7 t payload, 61% capacity used, transport distance 100 km						
A4 Trans	sport to construction site	Transport weight [kg/pc]	Packaging size (LxWxH) [mm]						
PG1		6.54	665x415x315 (1 pc)						

A5 Construction/Installation

No.	Scenario	Description
A 5	Manual with power tool	According to the manufacturer, the products are installed using electrical tools but without additional lifting and auxiliary devices. Energy consumption of the power tools: 0.011 MJ/piece

In case of deviating consumption during installation/assembly of the products which forms part of the site management, they are covered at the building level.

Ancillary materials, consumables, use of water, other resource use, material losses, direct emissions as well as waste materials during construction/installation are negligible.

It is assumed that the packaging material in the Module construction / installation is sent to waste handling. Packaging components (wood, cardboard and film) are recycled as secondary materials.

Since only one scenario is used, the results are shown in the relevant summary table.

Since only one scenario is used, the results are shown in the relevant summary table.

B2 Inspection, maintenance, cleaning

Since this is a single scenario, the results are shown in the relevant summary table.

B2.2 Maintenance

No.	Scenario	Description
B2.2.1	Normal use	Annual replacement of the filter

Ancillary materials, consumables, use of energy and water, waste, material losses and transport distances during maintenance are negligible.

Publication date: 30.09.2025

Page 20

Product group Decentralised ventilation units

B6 Operational energy use		
No.	Scenario	Description
В6	Energy use in utilisation phase	Total power consumption (including standby mode)
Since only one scenario is used, the results are shown in the relevant summary table		

Since only one scenario is used, the results are shown in the relevant summary table.

C1 Deconstruction

No.	Scenario	Description
C1	Mechanical deconstruction	Decentralised ventilation unit: 100% deconstruction The products are dismantled manually using power tools. This results in a total energy consumption of 0.011 MJ. Further deconstruction rates are possible, give adequate reasons.

Since this is a single scenario, the results are shown in the relevant summary table.

In case of deviating consumption, the removal of the products forms part of the site management and is covered at the building level.

C2 Transport

No.	Scenario	Description
C2	Transport	Transport to collection point using 40 t truck (Euro 6), diesel, 24.7 t payload, 61% capacity used, 50 km

Since this is a single scenario, the results are shown in the relevant summary table.

C3 Waste management

No.	Scenario	Description
C3	Utilization	Share for recirculation of materials: • Metals: 100% recycled Plastics: 100% thermal recycling

Average expenses for separating and sorting the materials are assumed.

As the products are sold throughout Europe, the disposal scenario was based on average data sets for Europe or average data sets for Germany if no European data sets are available.

Since this is a single scenario, the results are shown in the summary table.

Publication date: 30.09.2025

Page 21

Product group Decentralised ventilation units

C4 Disposal		
No.	Scenario	Description
C4	Disposal	Materials without calorific value (except metals) and the non-recoverable quantities and losses in the recovery/recycling chain (C1 and C3) are modeled as "landfilled."

The consumption in scenario C4 results from physical pre-treatment, waste recycling and management of the disposal site. The benefits obtained here from the substitution of primary material production are allocated to module D, e.g. electricity and heat from waste incineration.

Since only one scenario is used, the results are shown in the relevant summary table.

D Benefits and loads from beyond the system boundaries

No.	Scenario	Description
D	Recycling potential	Debits and credits from the recycling of metals Recovery of resources from energy production through the thermal treatment of packaging materials in modules A5 and B2.

The values in module D result from recycling of the packaging material in module A5 and from deconstruction at the end of service life.

Since this is a single scenario, the results are shown in the summary table.

Imprint

ROSENHEIM

Sphera Solutions GmbH Hauptstraße 111-113

Programme operator ift Rosenheim GmbH Theodor-Gietl-Str. 7-9

Tool creator / Practitioner of LCA

70771 Leinfelden-Echterdingen, Germany

Phone: +49 80 31/261-0 Fax: +49 80 31/261 290 E-Mail: info@ift-rosenheim.de www.ift-rosenheim.de

83026 Rosenheim, Germany

Declaration holder

SIEGENIA-AUBI KG Industriestraße 1-3 57234 Wilnsdorf, Germany

Notes

This EPD is mainly based on the work and findings of Institut für Fenstertechnik e.V., Rosenheim (ift Rosenheim) and specifically on ift-Guideline NA-01/3 "Allgemeiner Leitfaden zur Erstellung von Typ III Umweltproduktdeklarationen" (Guidance on preparing Type III Environmental Product Declarations).

The work, including all its parts, is protected by copyright. Any utilisation outside the confined limits of the copyright provisions is not permitted without the consent of the publishers and is punishable. In particular, this applies to any form of reproduction, translations, storage on microfilm and the storage and processing in electronic systems.

Layout

ift Rosenheim GmbH – 2021

Photographs (front page) SIEGENIA-AUBI KG

© ift Rosenheim, 2025

ift Rosenheim GmbH Theodor-Gietl-Str. 7-9 83026 Rosenheim, Germany Phone: +49 (0) 80 31/261-0 Fax: +49 (0) 80 31/261-290 Email: info@ift-rosenheim.de www.ift-rosenheim.de