Environmental Product Declaration (EPD)

Declaration code EPD-SHS-GB-75.0.01

Note: This EPD was created on the basis of an LCA tool.

locks and hardware for windows, doors and gates

Lift-sliding hardware

ift

ROSENHEIM

SIEGENIA-AUBI KG

Basis: DIN EN ISO 14025 EN 15804 + A2

Company EPD Environmental Product Declaration

Publication date: 09.12.2024

Valid until: 09.12.2029

ift Rosenheim GmbH Theodor-Gietl-Str. 7-9 83026 Rosenheim GERMANY Contact +49 8031 261-0 info@ift-rosenheim.de www.ift-rosenheim.de Testing + Calibration – EN ISO/IEC 17025 Inspection – EN ISO/IEC 17020 Product Certification – EN ISO/IEC 17065 Certification of Management Systems – EN ISO/IEC 17021

Declaration code EPD-SHS-GB-75.0.01

Programme operator	ift Rosenheim GmbH Theodor-Gietl-Straße 7-9 83026 Rosenheim, Germany		
Practitioner of LCA	Sphera Solutions GmbH Hauptstraße 111-113 70771 Leinfelden-Echterdingen, Germany		
Declaration holder	SIEGENIA-AUBI KG Industriestrasse 1-3 57234 Wilnsdorf, Germany www.siegenia.com		
Declaration code	EPD-SHS-GB-75.0.01		
Designation of declared product	Lift-sliding hardware		
Scope	The lift-sliding hardware are installed in the timber, PVC and aluminum lift-sliding elements.		
Basis	This EPD was prepared on the basis of EN ISO 14025:2011 and DIN EN 15804:2012+A2:2019. In addition, the "Allgemeiner Leitfaden zur Erstellung von Typ III Umweltproduktdeklarationen" (General guideline for preparation of Type III Environmental Product Declarations) applies. The declaration is based on the PCR documents "PCR Part A" PCR-A-1.0:2023 and "Lock and hardware" PCR-SB-3.0:2022.		
	Publication date:Last revision:Valid until:09.12.202413.12.202409.12.2029		
Validity	This verified Company Environmental Product Declaration (company EPD) applies solely to the specified products and is valid for a period of five years from the date of publication in accordance with DIN EN 15804.		
LCA Basis	The LCA was prepared in accordance with DIN EN ISO 14040 and DIN EN ISO 14044. The data collected from the production plants of the company SIEGENIA-AUBI KG were used as a data basis, as well as generic data from the database "Sphera - LCA for Expert Content version 2023.1". The calculation was carried out using the Siegenia LCA tool Sphera - LCA for Expert Content version 2023.1. LCA calculations were carried out for the "cradle to gate" life cycle with options (cradle to gate with options) including all upstream chains (e.g. raw material extraction, etc.).		
Notes	The ift-Guidance Sheet "Conditions and Guidance for the Use of ift Test Documents" applies. The declaration holder assumes full liability for the underlying data, certificates and verifications.		
1			

Mal

Christoph Seehauser Deputy Head for Sustainability

T. Mielaha Dr. Torsten Mielecke

Same Vor

Dr. Torsten Mielecke Chairman of Expert Committee ift-EPD and PCR

Susanne Volz External Verifier

ift Rosenheim GmbH Theodor-Gietl-Str. 7-9 83026 Rosenheim GERMANY Contact +49 8031 261-0 info@ift-rosenheim.de www.ift-rosenheim.de Testing + Calibration – EN ISO/IEC 17025 Inspection – EN ISO/IEC 17020 Product Certification – EN ISO/IEC 17065 Certification of Management Systems – EN ISO/IEC 17021

Product group locks and hardware for windows, doors and gates

1 General Product Information

Product definition

The EPD belongs to the product group locks and hardware for windows, doors and gates and applies to

1 pc lift-sliding hardware of company SIEGENIA-AUBI KG

The declared unit is obtained by summing up:

Assessed product	Declared unit	Unit weight
PORTAL HS	1 pc	41.10 kg/pc

Table 1Product groups

The average unit is declared as follows:

Directly used material flows are determined by means of manufactured masses (kg) and allocated to the declared unit. All other inputs and outputs in the manufacture were scaled to the declared unit as a whole, since no direct assignment to the average size is possible. The reference period is the year 2022.

The validity of the EPD is restricted to the following series: - PORTAL HS and Comfort Unit

Product description The hardware PORTAL HS is installed in the lift-sliding elements (windows and doors) and offer easy operation for any size of sliding element.

For a detailed product description refer to the manufacturer specifications or the product specifications of the respective offer/quotation.

Product manufacture	zinc die-cast finished parts		
	steel parts		
	standard parts		
	steel strip punching surface treatment		
	aluminum profiles	assembly	→ packaging
	aluminum profiles		
	plastic profiles mechanical processing		

Application

The lift-sliding hardware is installed in timber, PVC and aluminum sliding elements.

EPD Lift-sliding hardware Declaration code EPD-SHS-GB-75.0.01 Publication date: 09.12.2024

Product group locks and hardware for windows, doors and gates

Management systems	 The following management systems are held: Quality management system as per DIN EN ISO 9001:2015 Environmental management system as per DIN EN ISO 14001:2015 Occupational health and safety management system as per DIN EN ISO 45001:2018
Additional information	For additional verifications of applicability or conformity refer to the CE marking and the documents accompanying the product, if applicable.
2 Materials used	
Primary materials	The raw materials used can be found in Section 6.2 Inventory analysis (Inputs).
Declarable substances	It contains substances according to the REACH candidate list (declaration of 31.01.2023).
	All relevant safety data sheets are available from SIEGENIA-AUBI KG.

3 Construction process stage

Processing	Observe	the	instructions	for	assembly/installation,	operation,
recommendations,	maintenar	ice an	d disassembly	, prov	vided by the manufacture	er. For this,
installation	see <u>https:/</u>	<u>//www.</u>	<u>siegenia.com</u>			

4 Use stage

Emissions to the
environmentNo emissions to indoor air, water and soil are known. There may be VOC
emissions.

Reference service life (RSL) The RSL information was provided by the manufacturer. The RSL must be established under specified reference conditions of use and relate to the declared technical and functional performance of the product within the building. It must be determined according to all specific rules given in European product standards or, if none are available, according to a c-PCR. It must also take into account ISO 15686-1, -2, -7 and -8. If there is guidance on deriving RSLs from European Product Standards or a c-PCR, then such guidance must take precedence.

If it is not possible to determine the service life as the RSL in accordance with ISO 15686, the BBSR table "Nutzungsdauer von Bauteilen zur Lebenszyklusanalyse nach BNB" (service life of building components for life cycle assessment in accordance with the sustainable construction evaluation system) can be used. For further information and explanations refer to <u>www.nachhaltigesbauen.de</u>.

For this EPD the following applies:

For an EPD "cradle to factory gate with options", with modules C1-C4 and module D (A1-A3 + C + D and one or more additional modules from A4 to B7), the specification of a reference service life (RSL) is only possible if the reference service life conditions are specified.

EPD Lift-sliding hardware Declaration code EPD-SHS-GB- Publication date: 09.12.2024	Page 5
Product group locks and hardw	are for windows, doors and gates
	 The service life of the Lift-sliding hardware from SIEGENIA-AUBI KG is optionally specified as 40 years in accordance with product standards. The service life is dependent on the characteristics of the product and inuse conditions. The conditions and characteristics described in the EPD are applicable, in particular the characteristics listed below: Outdoor environment: Weather conditions can have a negative effect on the service life. Indoor environment: No impacts (e.g. humidity, temperature) known that have a negative effect on the service life. The service life solely applies to the characteristics specified in this EPD or the corresponding references. The RSL does not reflect the actual life time, which is usually determined by the service life and the redevelopment of a building. It does not give any information on the useful life, warranty referring to performance
	characteristics or guarantees.
5 End-of-life stage	
Possible end-of-life stages	Lift-sliding hardware are sent to central collection points. There the products are usually shredded and sorted into their constituents. The end-of-life stage depends on the site where the products are used and is therefore subject to the local regulations. Observe the locally applicable regulatory requirements.
	In this EPD, the modules of after-use are presented as follows: Steel is recycled, plastics are thermally recycled.
Disposal routes	The LCA includes the average disposal routes.
	All life cycle scenarios are detailed in the Annex.

Product group locks and hardware for windows, doors and gates

6 Life Cycle Assessment (LCA)

Environmental product declarations are based on life cycle assessments (LCAs) which use material and energy flows for the calculation and subsequent representation of environmental impacts.

As a basis for this, life cycle assessments were prepared for Lift-sliding hardware using an LCA tool. These LCAs are in conformity with the requirements set out in DIN EN 15804 and the international standards DIN EN ISO 14040, DIN EN ISO 14044, ISO 21930 and EN ISO 14025.

The LCA is representative of the products presented in the Declaration and the specified reference period.

6.1 Definition of goal and scope

o. Deminition of goal and scope			
Aim	The goal of the LCA is to demonstrate the environmental impacts of the products. In accordance with DIN EN 15804, the environmental impacts covered by this Environmental Product Declaration are presented for the entire product life cycle in the form of basic information. No other additional environmental impacts are specified.		
Data quality, data availability and geographical and time- related system boundaries	The specific data originate exclusively from the fiscal year 2022. They were collected on-site at the plants located in DE- 54411 Hermeskeil as well as in PL-46-203 Kluczbork and originate in parts from company records and partly from values directly obtained by measurement. The data was checked for validity by the tool creator / practitioner of LCA.		
	The generic data originates from the professional database and building materials database software "Sphera - LCA for Experts Content version 2023.1". The last update of both databases was in 2023. Data from before this date originate also from these databases and are not more than five years old. No other generic data were used for the calculation.		
	Generic data are selected as accurately as possible in terms of geographic reference. If no country-specific data sets are available or if the regional reference cannot be determined, European or globally valid data sets are used.		
	Data gaps were either filled with comparable data or conservative assumptions, or the data were cut off in compliance with the 1% rule.		
	The life cycle was modelled using the sustainability software tool "Sphera - LCA for Experts Content version 2023.1" for the development of life cycle assessments. The LCA was calculated using the Siegenia LCA tool version Sphera - LCA for Expert Content version 2023.1.		
Scope / system boundaries	The system boundaries refer to the supply of raw materials and purchased parts, manufacture/production, use and end-of-life stage of Lift-sliding hardware. No additional data from pre-suppliers/subcontractors or other sites were taken into consideration.		

EPD Lift-sliding hardware Declaration code EPD-SHS-GB-75.0.01 Publication date: 09.12.2024 Page 7			
		ROSENHEIM	
Product group locks and hardv	vare for windows, doors and gates		
Cut-off criteria	All company data collected, i.e. all commodities/input an used, the thermal energy and electricity consumption, consideration.		
	 The following data was truncated: Production of packaging for pre-products Transportation of the packaging of the end produ Ancillary materials and consumables Transportation of spare parts (Module B2) 	ct	
	The boundaries cover only the product-relevant sections/parts of facilities that are not relevant to the ma products, were excluded.		
	The transport distances of the pre-products used w consideration as a function of 100% of the mass of the p		
	The criteria for the exclusion of inputs and outputs DIN EN 15804 are fulfilled. From the data analysis it can that the total of negligible processes per life cycle stage of 1% of the mass/primary energy. This way the total processes does not exceed 5% of the energy and mas cycle calculation also includes material and energy flows less than 1%.	an be assumed does not exceed al of negligible s input. The life	
6.2 Inventory analysis			
Aim	All material and energy flows are described below. covered are presented as input and output parameters declared units.	-	
Life cycle stages	The complete life cycle of Lift-sliding hardware is show The product stage "A1 – A3", construction process stage stage "B2 and B6", end-of-life stage "C1 – C4" and the be beyond the system boundaries "D" are considered.	e "A4 – A5", use	
Benefits	 The below benefits have been defined as per DIN EN 15 Benefits from recycling Benefits (thermal and electrical) from incineration 		
Allocation of co-products	No allocations occur during production.		
Allocations for re-use, recycling and recovery	If the products are reused/recycled and recovered dur stage (rejects), the elements are shredded, if necessary into their constituents. This is done by various proce magnetic separators. The system boundaries were set following their dispose end-of-waste status.	and then sorted ess plants, e.g.	

 EPD Lift-sliding hardware
 Declaration code EPD-SHS-GB-75.0.01
 Fage 8
 If the second seco

Allocations beyond life cycle
boundariesThe use of recycled materials in the manufacturing process was based
on the current market-specific situation. In parallel to this, a recycling
potential was taken into consideration that reflects the economic value of
the product after recycling (recyclate).
The secondary material included as inputs in Lift-sliding hardware, is
calculated as input without loads. No benefits are assigned to Module D,
but consumption to Modules C3 and C4 (worst case consideration).
The system boundary set for the recycled material refers to collection.Secondary materialThe use of secondary material in Module A3 was considered for
SIEGENIA-AUBI KG. Secondary material is used:
• Waste paper in the production of packaging cardboard

Inputs

The following manufacturing-related inputs were included in the LCA per 1 pc lift-sliding hardware:

Energy

For the input material gas, "natural gas Germany" as well as "natural gas Poland" was assumed. For the electricity mix, the "Residiual grid mix Germany" as well as "Residiual grid mix Poland" was assumed. The input material of "light heating oil" is based on "light heating oil Germany", and the input material "biogas" is based on "biogas Germany".

A portion of the process heat is used for space heating. This can, however, not be quantified, hence a "worst case" figure was taken into account for the product.

Water

There is no water consumption in the individual process steps for production.

The consumption of fresh water specified in Section 6.3 originates (among others) from the process chain of the pre-products.

Raw material/Pre-products

The charts below show the share of raw materials/pre-products in percent.

Illustration 1 Percentage of individual materials per declared unit

Product group locks and hardware for windows, doors and gates

No.	Material	Mass in %
1	Metals	63
2	Plastics	37

Table 2 Percentage of individual materials per declared unit

Ancillary materials and consumables

Ancillary materials and consumables are cut off.

Product packaging

The amounts used for product packaging are as follows:

No.	Material	Mass in kg
1	Wood	4.03
2	Cardboard	3.54
3	PE film	0.34

 Table 3 Weight in kg of packaging per declared unit

Biogenic carbon content

Only the biogenic carbon content of the associated packaging is reported, as the total mass of biogenic carbon-containing materials is less than 5% of the total mass of the product and associated packaging. According to EN 16449, the following amounts of biogenic carbon are generated for packaging:

No.	Part	Content in kg
INO.	Fait	C per pc
1	In the corresponding packaging	3.174

Table 4 Biogenic carbon content of the packaging at the factory gate

The LCA includes the following production-relevant outputs per of 1 pc

Outputs

Waste

Secondary raw materials were included in the benefits. See Section 6.3 Impact assessment.

Waste water

lift-sliding hardware:

No waste water is produced during the manufacturing process.

6.3 Impact assessment

Aim

The impact assessment covers both inputs and outputs. The impact categories applied are stated below:

EPD Lift-sliding hardware Declaration code EPD-SHS-GB- Publication date: 09.12.2024	Page 10
Product group locks and hardw	vare for windows, doors and gates
Core indicators	The models for impact assessment were applied as described in DIN EN 15804+A2. The impact categories presented as core indicators in the EPD are as follows: • Climate change - total (GWP-t) • Climate change - fossil (GWP-f) • Climate change - land use & land use change (GWP-l) • Climate change - land use & land use change (GWP-l) • Ozone depletion (ODP) • Acidification (AP) • Eutrophication freshwater (EP-fw) • Eutrophication salt water (EP-m) • Eutrophication land (EP-t) • Photochemical ozone creation (POCP) • Depletion of abiotic resources - fossil fuels (ADPF) • Depletion of abiotic resources - minerals and metals (ADPE) • Water use (WDP) • Water use (
Resource management	 The models for impact assessment were applied as described in DN EN 15804-A2. The following resource use indicators are presented in the EPD: Renewable primary energy as energy source (PERE) Renewable primary energy for material use (PERM) Total use of renewable primary energy (PERT) Non-renewable primary energy for material use (PENRM) Total use of non-renewable primary energy (PENRT) Use of secondary materials (SM) Use of non-renewable secondary fuels (RSF) Net use of freshwater resources (FW)

RSF

NRSF

Product group locks and hardware for windows, doors and gates

Waste

The waste generated during the production of 1 pc lift-sliding hardware is evaluated and shown separately for the fractions trade wastes, special wastes and radioactive wastes. Since waste handling is modelled within the system boundaries, the amounts shown refer to the deposited wastes. A portion of the waste indicated is generated during the manufacture of the pre-products.

The models for impact assessment were applied as described in DIN EN 15804-A2.

The waste categories and indicators for output material flows presented in the EPD are as follows:

- Disposed hazardous waste (HWD)
- Non-hazardous waste disposed (NHWD)
- Radioactive waste disposed (RWD)
- Components for re-use (CRU)
- Materials for recycling (MFR)
- Materials for energy recovery (MER)
- Exported electrical energy (EEE)
- Exported thermal energy (EET)

Additional environmental impact indicators

The models for impact assessment were applied as described in DIN EN 15804-A2.

The additional impact categories presented in the EPD are as follows:

- Particulate matter emissions (PM)
- Ionizing radiation, human health (IRP)
- Ecotoxicity freshwater (ETP-fw)
- Human toxicity, carcinogenic effects (HTP-c)
- Human toxicity, non-carcinogenic effects (HTP-nc)
- Impacts associated with land use/soil quality (SQP)

ift					F	Results pe	er 1 pc PO	RTAL HS								
ROSENHEIM	Unit	A1-A3	A4	A5	B1	B2	B3	B4	B5	B 6	B7	C1	C2	C3	C4	D
	Core indicators															
GWP-t	kg CO₂ equivalent	193.73	0.39	12.13	ND	0.00	ND	ND	ND	0.00	ND	1.29E-03	0.17	28.08	0.00	-107.12
GWP-f	kg CO ₂ equivalent	204.86	0.39	1.18	ND	0.00	ND	ND	ND	0.00	ND	1.29E-03	0.16	28.07	0.00	-106.84
GWP-b	kg CO ₂ equivalent	-11.20	4.07E-05	10.95	ND	0.00	ND	ND	ND	0.00	ND	6.42E-07	1.71E-05	4.30E-03	0.00	-0.26
GWP-I	kg CO ₂ equivalent	7.86E-02	3.61E-03	3.14E-04	ND	0.00	ND	ND	ND	0.00	ND	1.18E-07	1.52E-03	1.50E-03	0.00	-2.44E-02
ODP	kg CFC-11-eq.	5.17E-10	5.08E-14	6.10E-13	ND	0.00	ND	ND	ND	0.00	ND	1.27E-14	2.13E-14	1.48E-11	0.00	-1.26E-10
AP	mol H⁺-eq.	0.66	5.71E-04	1.05E-03	ND	0.00	ND	ND	ND	0.00	ND	1.96E-06	2.39E-04	1.44E-02	0.00	-0.46
EP-fw	kg P-eq.	3.25E-04	1.43E-06	2.82E-07	ND	0.00	ND	ND	ND	0.00	ND	1.27E-09	5.98E-07	4.35E-06	0.00	-5.82E-05
EP-m	kg N-eq.	0.12	2.06E-04	2.97E-04	ND	0.00	ND	ND	ND	0.00	ND	5.54E-07	8.65E-05	6.52E-03	0.00	-6.43E-02
EP-t	mol N-eq.	1.31	2.44E-03	4.42E-03	ND	0.00	ND	ND	ND	0.00	ND	5.85E-06	1.03E-03	7.56E-02	0.00	-0.70
POCP	kg NMVOC-eq.	0.39	5.00E-04	8.16E-04	ND	0.00	ND	ND	ND	0.00	ND	1.53E-06	2.09E-04	1.71E-02	0.00	-0.20
ADPF*2	MJ	1.04E-03	2.57E-08	7.70E-09	ND	0.00	ND	ND	ND	0.00	ND	6.24E-11	1.08E-08	1.31E-07	0.00	-8.41E-04
ADPE*2	kg Sb equivalent	3153.64	5.31	1.96	ND	0.00	ND	ND	ND	0.00	ND	2.83E-02	2.23	34.49	0.00	-1373.56
WDP*2	m ³ world-eq. deprived	23.03	4.71E-03	0.70	ND	0.00	ND	ND	ND	0.00	ND	1.08E-04	1.98E-03	2.91	0.00	-14.94
						Resour	ce manag	ement								
PERE	MJ	877.04	0.39	123.61	ND	0.00	ND	ND	ND	0.00	ND	3.88E-03	0.16	7.83	0.00	-570.05
PERM	MJ	123.20	0.00	-123.20	ND	0.00	ND	ND	ND	0.00	ND	0.00	0.00	0.00	0.00	0.00
PERT	MJ	1000.24	0.39	0.41	ND	0.00	ND	ND	ND	0.00	ND	3.88E-03	0.16	7.83	0.00	-570.05
PENRE	MJ	2818.55	5.33	17.43	ND	0.00	ND	ND	ND	0.00	ND	2.83E-02	2.24	358.62	0.00	-1377.00
PENRM	MJ	339.59	0.00	-15.47	ND	0.00	ND	ND	ND	0.00	ND	0.00	0.00	-324.12	0.00	0.00
PENRT	MJ	3158.14	5.33	1.96	ND	0.00	ND	ND	ND	0.00	ND	2.83E-02	2.24	34.50	0.00	-1377.00
SM	kg	12.22	0.00	0.00	ND	0.00	ND	ND	ND	0.00	ND	0.00	0.00	0.00	0.00	16.53
RSF	MJ	0.00	0.00	0.00	ND	0.00	ND	ND	ND	0.00	ND	0.00	0.00	0.00	0.00	0.00
NRSF	MJ	0.00	0.00	0.00	ND	0.00	ND	ND	ND	0.00	ND	0.00	0.00	0.00	0.00	0.00
FW	m³	1.87	4.24E-04	1.65E-02	ND	0.00	ND	ND	ND	0.00	ND	6.49E-06	1.78E-04	7.17E-02	0.00	-1.37
						Categ	ories of w	aste								
HWD	kg	2.37E-05	1.65E-11	3.69E-11	ND	0.00	ND	ND	ND	0.00	ND	1.64E-12	6.93E-12	5.10E-10	0.00	1.32E-07
NHWD	kg	35.18	8.13E-04	0.11	ND	0.00	ND	ND	ND	0.00	ND	6.24E-06	3.41E-04	8.31	0.00	-24.89
RWD	kg	0.15	9.98E-06	9.07E-05	ND	0.00	ND	ND	ND	0.00	ND	4.41E-06	4.19E-06	9.86E-04	0.00	-8.04E-02
						Output	material	flows								
CRU	kg	0.00	0.00	0.00	ND	0.00	ND	ND	ND	0.00	ND	0.00	0.00	0.00	0.00	0.00
MFR	kg	8.13E-03	0.00	0.00	ND	0.00	ND	ND	ND	0.00	ND	0.00	0.00	25.94	0.00	0.00
MER	kg	0.00	0.00	0.00	ND	0.00	ND	ND	ND	0.00	ND	0.00	0.00	0.00	0.00	0.00
EEE	MJ	0.00	0.00	9.89	ND	0.00	ND	ND	ND	0.00	ND	0.00	0.00	39.93	0.00	0.00
EET	MJ	0.00	0.00	17.77	ND	0.00	ND	ND	ND	0.00	ND	0.00	0.00	72.15	0.00	0.00
use change C feutrophication p minerals&metals primary energy r	ETMJ0.000.0017.77ND0.00NDNDND0.00ND0.0072.150.000.00ey: WP-t – Global warming potential – totalGWP-f – global warming potential fossil fuelsGWP-b – global warming potential - biogenicGWP-I – global warming potential - land use and land se changeODP – ozone depletion potentialAP - acidification potentialEP-fw - eutrophication potential - aquatic freshwaterEP-m - eutrophication potential - aquatic marineEP-t - eutrophication potential - terrestrialPOCP - photochemical ozone formation potentialADPF*2 - abiotic depletion potential – fossil resourcesADPE*2 - abiotic depletion potential – entrophication potential – fossil resourcesADPE*2 - abiotic depletion potential – entrophication potential – fossil resourcesPERT - total use of renewable primary energyrimerals&metalsWDP*2 – Water (user) deprivation potentialPERE - Use of renewable primary energyPERM - use of non-renewable primary energy resourcesPENRT - total use of non-renewable primary energyrimary energy resourcesPENRE - use of non-renewable primary energyPENRM - use of non-renewable primary energy resourcesPENRT - total use of non-renewable primary energy															

resources SM - use of secondary material RSF - use of renewable secondary fuels NRSF - use of non-renewable secondary fuels FW - net use of fresh water HWD - hazardous waste disposed NHWD - non-hazardous waste disposed RWD - radioactive waste disposed CRU - components for re-use MFR - materials for recycling MER - materials for energy recovery EEE - exported electrical energy EET - exported thermal energy ND - not considered

ift	Results per 1 pc PORTAL HS															
ROSENHEIM	Unit	A1-A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4	D
					Addition	nal enviro	nmental i	mpact ind	icators							
PM	Disease incidence	8.16E-06	4.91E-09	7.06E-09	ND	0.00	ND	ND	ND	0.00	ND	1.77E-11	2.06E-09	1.24E-07	0.00	-5.24E-06
IRP*1	kBq U235-eq.	25.51	1.49E-03	1.45E-02	ND	0.00	ND	ND	ND	0.00	ND	6.62E-04	6.24E-04	0.12	0.00	-16.31
ETP-fw*2	CTUe	1055.37	3.77	1.02	ND	0.00	ND	ND	ND	0.00	ND	8.11E-03	1.58	21.31	0.00	-459.19
HTP-c*2	CTUh	9.64E-08	7.72E-11	7.16E-11	ND	0.00	ND	ND	ND	0.00	ND	1.46E-13	3.24E-11	9.13E-10	0.00	-5.95E-08
HTP-nc*2	CTUh	2.41E-06	4.12E-09	4.43E-09	ND	0.00	ND	ND	ND	0.00	ND	7.49E-12	1.73E-09	8.27E-08	0.00	-2.45E-07
SQP*2	dimensionless	1467.84	2.22	0.64	ND	0.00	ND	ND	ND	0.00	ND	3.83E-03	0.93	7.28	0.00	-68.79
	$\frac{1467.84}{1467.84} = \frac{1467.84}{2.22} = \frac{1467.84}{0.64} = \frac{1467.84}{0.00} = 1467.8$								al – cancer							

Disclaimers:

*1 This impact category deals mainly with the eventual impact of low dose ionizing radiation on human health of the nuclear fuel cycle. It does not consider effects due to possible nuclear accidents, occupational exposure nor due to radioactive waste disposal in underground facilities. Potential ionising radiation from the soil, from radon and from some building materials is also not measured by this indicator.

*2 The results of this environmental impact indicator shall be used with care as the uncertainties on these results are high or as there is limited experience with the indicator.

EPD Lift-sliding hardware Declaration code EPD-SHS-GB-75.0.01 Publication date: 09.12.2024

Page 14

Product group locks and hardware for windows, doors and gates

6.4 Interpretation, LCA presentation and critical review

Evaluation

It can be seen that the manufacturing phase dominates the product system (modules A1-A3). The recycling of metal parts and the avoided pollution contribute to the considerable credits in Module D. The results for modules B2 and B6 are given for the RSL of 40 years and have no impact on the life cycle. Modules A4, A5, C1, C2 and C3 have a negligible impact overall. Module C4 has no effect.

The following figure shows the results of the individual modules as an example of the global warming potential.

Illustration 2 Absolute values of the modules of the GWP total

The values obtained from the LCA calculation are suitable for the certification of buildings.

The LCA report underlying this EPD was developed according to the requirements of DIN EN ISO 14040 and DIN EN ISO 14044 as well as DIN EN 15804 and DIN EN ISO 14025. It is deposited with ift Rosenheim. The results and conclusions reported to the target group are complete, correct, without bias and transparent. The results of the study are not designed to be used for comparative statements intended for publication.

Critical review The critical review of the LCA and the report took place in the course of verification of the EPD and was carried out by the external verifier Susanne Volz, M Sc. Environmental Sciences

Report

Product group locks and hardware for windows, doors and gates

7 General information regarding the EPD

Comparability	This EPD was prepared according to DIN EN 15804 and is therefore only comparable to those EPDs that also comply with the requirements set out in DIN EN 15804. Any comparison must refer to the building context and the same boundary conditions of the various life cycle stages. For comparing EPDs of construction products, the rules set out in DIN EN 15804, Clause 5.3, apply.
Communication	The communications format of this EPD meets the requirements of EN 15942:2012 and is therefore the basis for B2B communication. Only the nomenclature has been changed according to DIN EN 15804.
Verification	Verification of the Environmental Product Declaration is documented in accordance with the ift "Richtlinie zur Erstellung von Typ III Umweltproduktdeklarationen" (Guidance on preparing Type III Environmental Product Declarations) in accordance with the requirements set out in DIN EN ISO 14025. This declaration is based on the PCR documents "PCR Part A" PCR-A-1.0:2023 and "Lock and hardware" PCR-SB-3.0:2022.

13.12.2024

2

		The European	standard EN 15804	serves as the c	ore PCR ^{a)}					
	Ind	ependent verifi	cation of the declara	tion and statem	ent according					
		to EN ISO 14025:2010								
		Independent third party verifier: b)								
	Susanne Volz									
		^{a)} Product category rules								
		^{b)} Optional for business-to-business communication								
		Mandatory	for business-to-con	sumer commun	ication					
			(see EN ISO 14025)	2010. 9.4).						
	No.	Date	Note	Person in	Testing					
locument				charge	personnel					
	1	09.12.2024	External	Dumproff	Volz					
			verification							

Formal

adjustments

Dumproff

-

Revisions of this document

Publication date: 09.12.2024

Page 16

Product group locks and hardware for windows, doors and gates

8 Bibliography

1. **Research project.** "EPDs für transparente Bauelemente" (EPDs for transparent building components) - Final report. Rosenheim: ift Rosenheim GmbH, 2011. SF-10.08.18.7-09.21/II 3-F20-09-1-067.

2. **ift-Guideline NA-01/4.** *General guideline for preparation of Type III Environmental Product Declarations* Rosenheim: ift Rosenheim GmbH, 2023.

3. **ift Rosenheim GmbH.** *Conditions and Guidance for the Use of ift Test Documents.* Rosenheim: s.n., 2016.

4. **DIN EN ISO 12457 Part 1-4.** Characterization of waste -Leaching; Compliance test for leaching of granular waste materials and sludges - Part 1-4: Berlin: Beuth Verlag GmbH, 2003.

5. **IKP Universität Stuttgart and PE Europe GmbH.** *GaBi 10: Software and database for LCA.* Leinfelden-Echterdingen: s.n., 2020.

6. Chemikaliengesetz – ChemG (Chemicals Act). Law on protection against hazardous substances - Subdivided into Chemicals Law and a series of regulations; of relevance here: Law on protection against hazardous substances. Berlin: BGBI. (Federal Gazette) I S. 1146, 2017.

7. Bundesimmissionsschutzgesetz - BlmSchG. (Federal Immission Law). Gesetz zum Schutz vor schädlichen Umwelteinwirkungen durch Luftverunreinigungen, Geräusche, Erschütterungen und ähnlichen Vorgängen (Law on harmful environmental impacts by air contamination, noise, vibrations and similar processes). Berlin: BGBI. (Federal Gazette) I S. 3830, 2017.

8. **ISO 21930:2017-07.** *Sustainability in building construction - Environmental declaration of building products.* Berlin: Beuth Verlag, 2017.

9. **ISO 15686-1:2011-05.** Buildings and constructed assets -Service life planning - Part 1: General principles and framework. s.l. : Beuth Verlag GmbH, 2011.

10. **ISO 15686-2:2012-05.** Buildings and constructed assets -Service life planning - Part 2: Service life prediction procedures. s.l. : Beuth Verlag GmbH, 2012.

11. **ISO 15686-7:2017-04.** Buildings and constructed assets -Service life planning - Part 7: Performance evaluation for feedback of service life data from practice. s.l. : Beuth Verlag GmbH, 2017.

12. **ISO 15686-8:2008-06.** Buildings and constructed assets -Service life planning - Part 8: Reference service life and service-life estimation. s.l. : Beuth Verlag GmbH, 2008.

13. **DIN EN ISO 16000 Parts 6, 9 11.** *Indoor air: Determination of the emission of volatile organic compounds from building products and furnishing.* Berlin: Beuth Verlag GmbH, 2012, 2008, 2006.

14. **DIN EN 13501-1:2010-01.** *Fire classification of construction products and building elements - Part 1: Classification using data from reaction to fire tests.* Berlin: Beuth Verlag GmbH, 2010.

15. Bundesministerium für Umwelt, Naturschutz, Bau und Reaktorsicherheit (Federal Ministry for the Environment, Nature Conservation and Nuclear Safety). Leitfaden Nachhaltiges Bauen (Guidance on Sustainable Building). Berlin: s.n., 2016.

16. **DIN EN 15804:2012+A2:2019+AC:2021.** Sustainability of construction works - Environmental product declarations -

Core rules for the product category of construction products: Berlin: Beuth Verlag GmbH, 2022.

17. EN 17672:2022. Sustainability of construction works -Environmental product declarations - Horizontal rules for business-to-consumer communication. Berlin: Beuth Verlag GmbH, 2022.

18. **EN 15942:2012-01.** Sustainability of construction works -Environmental product declarations - Communication format business-to-business. Berlin: Beuth Verlag GmbH, 2012.

19. **OENORM S 5200:2009-04-01.** *Radioactivity in construction materials.* Berlin: Beuth Verlag GmbH, 2009.

20. **EN ISO 14025:2011-10.** *Environmental labels and declarations - Type III environmental declarations - Principles and procedures.* Berlin: Beuth Verlag GmbH, 2011.

21. **DIN EN ISO 14044:2006-10.** *Environmental management* - *Life cycle assessment* - *Requirements and guidelines.* Berlin: Beuth Verlag GmbH, 2006.

22. **DIN EN ISO 14040:2018-05.** *Environmental management* - *Life cycle assessment - Principles and framework.* Berlin: Beuth Verlag GmbH, 2018.

23. Chemikalien-Verbotsverordnung - ChemVerbotsV. (Chemicals Prohibition Regulation). Verordnung über Verbote und Beschränkungen des Inverkehrbringens gefährlicher Stoffe, Zubereitungen und Erzeugnisse Chemikaliengesetz (Regulation on bans and restrictions of the placing on the market of hazardous substances, formulations and products covered by the Chemicals Law). Berlin: BGBI. (Federal Gazette) I S. 1328, 2017.

24. Gefahrstoffverordnung - GefStoffV. (Hazardous substances regulation). Verordnung zum Schutz vor Gefahrstoffen (Regulation on protection against hazardous substances). Berlin: BGBI. (Federal Gazette) I S. 3758, 2017. 25. Eyerer, P. und Reinhardt, H.-W. Ökologische Bilanzierung von Baustoffen und Gebäuden - Wege zu einer ganzheitlichen Bilanzierung. (LCA of building materials and buildings - Routes to integrated LCA). Basel: Birkhäuser Verlag, 2000.

26. **Klöpffer, W und Grahl, B.** *Ökobilanzen (LCA).* Weinheim: Wiley-VCH-Verlag, 2009.

27. **PCR Part A.** *Product category rules for environmental product declarations as per EN ISO 14025 and EN 15804.* Rosenheim: ift Rosenheim, 2023.

28. **PCR Part B - Locks and hardware.** *Product category rules for environmental product declarations as per EN ISO 14025 and EN 15804.* Rosenheim: ift Rosenheim, 2022.

EPD Lift-sliding hardwareDeclaration code EPD-SHS-GB-75.0.01Publication date: 09.12.2024Page 17

Product group locks and hardware for windows, doors and gates

9 Annex

Description of life cycle scenarios for Lift-sliding hardware

Pro	duct st	tage	Co struc proc sta	ction cess			Us	se stag	e*			E	ind-of-l	ife stag	e		Benefits and loads beyond system boundaries
A1	A2	A3	A4	A5	B1	B2	B3	B4	В5	B6	B7	C1	C2	C3	C4		D
 Raw material supply 	✓ Transport	✓ production	✓ Transport	Construction/installation process	Use	maintenance	Repair	replacement	Refurbishment	✓ Operational energy use	Operational water use	Ceconstruction/demolition	✓ Transport	Waste processing	Disposal	-	Reuse Recovery Recycling potential

Table 5 Overview of applied life cycle stages

The scenarios were calculated taking into account the defined RSL (see Point 4 Stage of use).

The scenarios were based on information provided by the manufacturer.

<u>Note:</u> The standard scenarios selected are presented in bold type. They were also used for calculating the indicators in the summary table.

- ✓ Included in the LCA
- Not included in the LCA

Product group locks and hardware for windows, doors and gates

A4 Transport

No.	Scenario		Description				
A4	Small series - direct r	narketing	40 t truck (Euro 6), 24.7 t payload, 61% capacity used ¹ , approx. 50 km to site and empty return trip				
	Insport to ruction site	Transpor	t weight [kg/pc]	Density [kg/m³]			
PG1		49.01		210.57			

Since this is a single scenario, the results are shown in the relevant summary table.

A5 Construction/installation process

No.	Scenario Description								
A5	Energy consumption of the power tools: 0.011 MJ/pc Electricity mix (RER)								
In case of deviating consumption during installation/assembly of the products which forms part of the site management, they are covered at the building level.									
-	Ancillary materials, consumables, use of water, other resource use, material losses, direct emissions as well as waste materials during construction/installation are negligible.								
Waste is wood ar incinera replaces Transpo	It is assumed that the packaging material in the Module construction / installation is sent to waste handling. Waste is only thermally recycled or deposited in line with the conservative approach: Foils / protective covers, wood and cardboard in incineration plants. Benefits from A5 are specified in module D. Benefits from waste incineration: Benefits from waste incineration: electricity replaces electricity mix (RER); thermal energy replaces thermal energy from European natural gas (RER). Transport to the recycling plants is not taken into account. Since this is a single scenario, the results are shown in the relevant summary table.								

B2 Cleaning, maintenance and repair

According to the manufacturer, no cleaning, maintenance and repair is required for the products in question. Ancillary materials, consumables, use of energy and water, waste, material losses and transport distances are negligible.

Since this is a single scenario, the results are shown in the relevant summary table.

Product group locks and hardware for windows, doors and gates

B6 Operational energy use

There is no energy used during normal use. The products are opened by manual control. There is no transport consumption for energy use in buildings. Ancillary materials, consumables and water, waste materials and other scenarios are negligible.

Since this is a single scenario, the results are shown in the relevant summary table.

C1 Deconstruction, demolition

No.	Scenario	Description						
C1	Deconstruction	Lift-sliding hardware: 100% deconstruction The products are dismantled manually using power tools. This results in a total energy consumption of 0.011 MJ.						
		Further deconstruction rates are possible, give adequate reasons.						
Since th	Since this is a single scenario, the results are shown in the relevant summary table.							

In case of deviating consumption the removal of the products forms part of site management and is covered at the building level.

C2 Transport

No.	Scenario	DescriptionTransport to collection point using 40 t truck (Euro 6), diesel, 27.4 t payload, 61% capacity used, 50 km							
C2	Transport								
Since th	Since this is a single scenario, the results are shown in the relevant summary table.								

Product group locks and hardware for windows, doors and gates

C3 Waste management

No.	Scenario	Description							
С3	Utilization	 Share for recirculation of materials: Metals: 100% recycled Plastics: 100% thermal recycling 							
Average	Average expenses for separating and sorting the materials are assumed.								
	As the products are sold throughout Europe, the disposal scenario was based on average data sets for Europe or average data sets for Germany if no European data sets are available.								

Since this is a single scenario, the results are shown in the summary table.

C4 Disposal

No.	Scenario	Description							
C4	Disposal	No material components are disposed of in the landfill							
Since th	Since this is a single scenario, the results are shown in the summary table.								

D Benefits and loads from beyond the system boundaries

No.	Scenario	Description ¹
D	Recycling potential	Debits and credits from the recycling of metals Benefits from incineration plant: Benefits from waste incineration: electricity replaces electricity mix (RER); thermal energy replaces thermal energy from European natural gas (RER).

The values in Module D result from recycling of the packaging material in Module A5 and from deconstruction at the end of service life.

Since this is a single scenario, the results are shown in the summary table.

Sphera

Imprint

Practitioner of LCA Sphera Solutions GmbH Hauptstraße 111-113 70771 Leinfelden-Echterdingen, Germany

Programme operator

ift Rosenheim GmbH Theodor-Gietl-Straße 7-9 83026 Rosenheim, Germany Phone +49 (0)8031/261-0 Fax: +49 (0)8031/261-290 E-Mail: info@ift-rosenheim.de www.ift-rosenheim.de

Declaration holder

SIEGENIA-AUBI KG Industriestrasse 1-3 57234 Wilnsdorf, Germany

Notes

This EPD is mainly based on the work and findings of the Institut für Fenstertechnik e.V., Rosenheim (ift Rosenheim) and specifically on the ift-Richtlinie NA-01/4 Allgemeiner Leitfaden zur Erstellung von Typ III Umweltproduktdeklarationen. (ift-Guideline NA-01/4 - Guidance on preparing Type III **Environmental Product Declarations)** The work, including all its parts, is protected by copyright. Any use outside the narrow limits of copyright law without the consent of the publisher is inadmissible and punishable by law. In particular, this applies to any form of reproduction, translations, storage on microfilm and the storage and processing in electronic systems.

Layout ift Rosenheim GmbH - 2021

Photographs (front page) SIEGENIA-AUBI KG

© ift Rosenheim, 2024

ift Rosenheim GmbH Theodor-Gietl-Straße 7-9 83026 Rosenheim, Germany Phone: +49 (0) 80 31/261-0 Fax: +49 (0) 80 31/261-290 E-Mail: info@ift-rosenheim.de www.ift-rosenheim.de